import nltk
import pandas as pd
import re
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.stem import WordNetLemmatizer
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.decomposition import LatentDirichletAllocation

Load data
data = pd.read_excel('E:\\Positive\\AAAAFED\\2025 Results\\Revision Nov 2025\\FED_speeches_core_analysis_jupyter_20251109.xlsx')

Custom stop words
custom_stopwords = ["may", "like", "one", "would","also", "many", "new", "pdf", "http", "see", "available", "gov", "want", "use", "speech"]
all_stopwords = set(stopwords.words('english')).union(set(custom_stopwords))

List of n-grams to be treated as single tokens
n_grams = ["Monetary policy", "Federal Reserve", "Interest rate", "Financial stability", "Quantitative easing", "Economic growth", "Inflation rate", "Open market operations", "Monetary base", "Reserve requirements", "Bank supervision", "Systemic risk", "Capital adequacy", "Liquidity provision", "Discount window", "Financial crisis", "Macroprudential policy", "Price stability", "Money supply", "Asset purchases", "Nominal anchor", "Phillips curve", "Inflation targeting", "Monetary transmission", "Neutral interest rate", "Forward guidance", "Taylor rule", "Exchange rate peg", "Nominal GDP targeting", "Natural rate hypothesis", "Dual mandate", "Lender of last resort", "Seigniorage revenue", "Fiscal dominance", "Balance sheet channel", "Balance sheet", "Time inconsistency", "Interest rate smoothing", "Expectations hypothesis", "Risk-weighted assets", "Endogenous Money", "Policy normalization", "Dot plot", "Rate hike", "Forward projections", "FOMC statement", "Economic outlook", "Policy rate", "Rate decision", "Meeting minutes", "Press conference", "Rate expectations", "Monetary accommodation", "Balance sheet runoff", "Market reaction", "Policy stance", "Interest rate path", "Policy framework", "Target range", "Growth projections", "Federal funds rate", "Unemployment rate", "Labor market", "Job creation", "Full employment", "Wage growth", "Labor force participation", "Structural unemployment", "Natural rate of unemployment", "Employment conditions", "Jobless claims", "Fiscal stimulus", "Budget deficit", "Government spending", "Tax policy", "Debt ceiling", "Public debt", "Deficit spending", "Fiscal responsibility", "Tax cuts", "Automatic stabilizers", "Forward guidance", "Policy expectations", "Rate path", "Future guidance", "Conditional guidance", "Commitment to transparency", "Expectations management", "Interest rate expectations", "Time-dependent guidance", "Outcome-based guidance", "capital reform", "bank regulation", "financial inclusion", "stress test"
]

def preprocess_text(text):
 # Initialize the WordNet lemmatizer
 lemmatizer = WordNetLemmatizer()

 text = text.lower()

 # Replace spaces in predefined n-grams with underscores
 for phrase in n_grams:
 text = re.sub(r'\b' + phrase + r'\b', phrase.replace(" ", "_"), text)

 tokens = word_tokenize(text)
 tokens = [t for t in tokens if len(t) > 2 and t not in all_stopwords]

 # Lemmatize tokens
 lemmatized_tokens = [lemmatizer.lemmatize(t) for t in tokens]

 return lemmatized_tokens

data['processed_text'] = data['text'].apply(preprocess_text)

Convert tokenized text back to strings for vectorization
data['processed_string'] = data['processed_text'].apply(' '.join)

Vectorize the preprocessed text
vectorizer = CountVectorizer(max_df=0.95, min_df=2, max_features=1000)
dtm = vectorizer.fit_transform(data['processed_string'])

Train LDA model
lda_model = LatentDirichletAllocation(n_components=20, random_state=42)
lda_model.fit(dtm)

Display top terms for each topic
topics = {}
for index, topic in enumerate(lda_model.components_):
 topics[index] = [vectorizer.get_feature_names_out()[i] if hasattr(vectorizer, 'get_feature_names_out') else vectorizer.get_feature_names()[i] for i in topic.argsort()[-10:]]
for topic_num, terms in topics.items():
 print(f"Topic {topic_num + 1}: {', '.join(terms)}\n")

Transform the document-term matrix to get topic weights
topic_weights = lda_model.transform(dtm)

Display topic weights for each document
for doc_index, weights in enumerate(topic_weights):
 print(f"Document {doc_index + 1} - Topic Weights: {', '.join(map(str, weights))}")

Save topic weights to an Excel file
topic_weights_df = pd.DataFrame(topic_weights, columns=[f"Topic_{i+1}" for i in range(20)]) # Adjust column names if needed
topic_weights_df.to_excel('e:topic_weights_matrix.xlsx', index=False)
print("Topic weights matrix saved to 'e:topic_weights_matrix.xlsx'")
